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The Asymptotic Finite-dimensional Character
of a Spectrally-hyperviscous Model of 3D Turbulent
Flow
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We obtain attractor and inertial-manifold results for a class of 3D turbu-
lent flow models on a periodic spatial domain in which hyperviscous terms
are added spectrally to the standard incompressible Navier–Stokes equations
(NSE). Let Pm be the projection onto the first m eigenspaces of A=−�, let
µ and α be positive constants with α �3/2, and let Qm = I −Pm, then we
add to the NSE operators µAϕ in a general family such that Aϕ �QmAα in
the sense of quadratic forms. The models are motivated by characteristics of
spectral eddy-viscosity (SEV) and spectral vanishing viscosity (SVV) models.
A distinguished class of our models adds extra hyperviscosity terms only to
high wavenumbers past a cutoff λm0 where m0 �m, so that for large enough
m0 the inertial-range wavenumbers see only standard NSE viscosity.
We first obtain estimates on the Hausdorff and fractal dimensions of
the attractor A (respectively dimH A and dimF A). For a constant Kα

on the order of unity we show if µ � ν that dimH A � dimF A �
Kα [λm/λ1]9(α−1)/(10α) [l0/lε ](6α+9)/(5α) and if µ�ν that dimH A�dimF A�
Kα (ν/µ)9/(10α) [λm/λ1]9(α−1)/(10α) [l0/lε ](6α+9)/(5α) where ν is the standard
viscosity coefficient, l0 = λ

−1/2
1 represents characteristic macroscopic length,

and lε is the Kolmogorov length scale, i.e. lε = (ν3/ε) where ε is Kolmogo-
rov’s mean rate of dissipation of energy in turbulent flow. All bracketed con-
stants and Kα are dimensionless and scale-invariant. The estimate grows in
m due to the term λm/λ1 but at a rate lower than m3/5, and the estimate
grows in µ as the relative size of ν to µ. The exponent on l0/lε is sig-
nificantly less than the Landau–Lifschitz predicted value of 3. If we impose
the condition λm �(1/lε)

2, the estimates become Kα [l0/lε ]3 for µ �ν and

Kα (ν/µ)
9

10α [l0/lε ]3 for µ�ν. This result holds independently of α, with Kα

and cα independent of m. In an SVV example µ�ν, and for µ�ν aspects
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of SEV theory and observation suggest setting µ∼cν for 1/c within α orders
of magnitude of unity, giving the estimate cαKα [l0/lε ]3 where cα is within
an order of magnitude of unity. These choices give straight-up or nearly
straight-up agreement with the Landau–Lifschitz predictions for the number
of degrees of freedom in 3D turbulent flow with m so large that (e.g. in
the distinguished-class case for m0 large enough) we would expect our solu-
tions to be very good if not virtually indistinguishable approximants to stan-
dard NSE solutions. We would expect lower choices of λm (e.g. λm ∼a(1/lε)

with a>1) to still give good NSE approximation with lower powers on l0/lε ,
showing the potential of the model to reduce the number of degrees of free-
dom needed in practical simulations. For the choice ε ∼να , motivated by
the Chapman–Enskog expansion in the case m = 0, the condition becomes
λm �ν(1/lε)

2, giving agreement with Landau–Lifschitz for smaller values of
λm then as above but still large enough to suggest good NSE approximation.
Our final results establish the existence of a inertial manifold M for reason-
ably wide classes of the above models using the Foias/Sell/Temam theory. The
first of these results obtains such an M of dimension N >m for the general
class of operators Aϕ if α >5/2.
The special class of Aϕ such that PmAϕ = 0 and QmAϕ �QmAα has a
unique spectral-gap property which we can use whenever α �3/2 to show
that we have an inertial manifold M of dimension m if m is large enough.
As a corollary, for most of the cases of the operators Aϕ in the distin-
guished-class case that we expect will be typically used in practice we also
obtain an M, now of dimension m0 for m0 large enough, though under con-
ditions requiring generally larger m0 than the m in the special class. In both
cases, for large enough m (respectively m0), we have an inertial manifold for
a system in which the inertial range essentially behaves according to standard
NSE physics, and in particular trajectories on M are controlled by essentially
NSE dynamics.

KEY WORDS: 3D turbulent flow models; attractor dimension; inertial man-
ifolds; degrees of freedom.
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1. INTRODUCTION

We consider in this paper modifications of the Navier–Stokes equation
in which hyperviscous terms are spectrally added (see (1.4) below). The
motivation for our models comes from certain subgrid-scale (SGS) mod-
eling techniques. In large-eddy simulation (LES) of turbulent incompress-
ible flow, the divergence of a SGS tensor Ssg (u) is added to the standard
Navier–Stokes equations (NSE) to obtain the system

ut +div
(
Ssg (u)

)+νAu+ (u ·∇) u+∇p =f, (1.1a)
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div u=0. (1.1b)

Here A=−� while in 3D u= (u1, u2, u3) with ui =ui (x, t), g = (g1, g2, g3)

with gi =gi (x, t) , i =1,2,3, and p=p (x, t) where x ∈Ω, a domain in R3.
The unknown u is the velocity field of the fluid and g and p represent the
external force and the pressure, respectively. The full SGS tensor takes the
form of the stress tensor Ssg (u) = τij = ũiuj − ũi ũj where in typical LES
a low-pass filtering operation at scale δ is represented by the tilde. The
most common approximate SGS model is the eddy-visocity (EV) method
which assumes that τd

ij ≡− 1
3τkkδ

ij =2νT S̃ij where τd
ij is the deviatoric part

of τij and S̃ij is the resolved strain-rate tensor. Generally in EV the eddy-
viscosity acts equally on all scales of motion, but it has been shown in this
case (see e.g. [6]) that the local energy flux can be poorly correlated with
the local energy dissipation rate.

In [24] Kraichnan argued that the eddy viscosity should in fact
depend on the wavenumber magnitude. Let Ck be the Kolmogorov con-
stant, let kδ ∼1/δ be the filter wavenumber, and let E< (k, t) be the energy
spectrum of the filtered velocity field, then a working fit [9, 10] to the the-
oretical predictions of this dependence is

νev (k, kδ)=C
−3/2
k

[
α1 +α2 exp

(
−3.03

kδ

k

)]√
E< (kδ)

kδ

(1.2)

where a1 = 0.441, a2 = 15.3. Typically kδ is in the neighborhood of 1/lε ,
where lε is the Kolmogorov length scale. Among the salient features of the
fit is the monotonically increasing behavior, with a relatively sharp rise as
k climbs into the high wavenumber ranges. In LES of non-homogeneous
flows, the implementation of spectral eddy-viscosity (SEV) is not easy. As
advocated in [10], a possible approximation to the SEV term is to use
instead a hyper-viscous term µAα for a positive constant µ resulting in the
hyperviscous Navier–Stokes equations (HNSE):

ut +µAαu+νAu+ (u ·∇) u+∇p =f, (1.3a)

div u=0. (1.3b)

The HNSE has been used extensively in turbulence simulations. In partic-
ular Borue and Orsag [5, 6] were able to use (1.3) to produce an inertial
range that is wider than with regular viscosity. For a more detailed review
of these considerations concerning EV and SEV LES models, see e.g.
[1, 7, 21] and the references contained therein. For further discussion of
theoretical results concerning (1.3), see [3].
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Another approximation to SEV is the spectral vanishing viscosity
method (SVV), first introduced by Tadmor et al. [8, 30] as an alternative
to the viscosity-solution (VS) method for conservation laws. Like EV, the
viscosity-solution method employs a fixed differential operator resulting in
“an uncontrollable process that can destroy the solution accuracy” [21].
The SVV method alternatively uses typically second-order viscosity kernels
with wavenumber-dependent coefficients that reflect the behavior of (1.2),
but which are not just small but zero for low wavenumbers. The original
idea for conservation laws was to enforce the correct entropy dissipation
as in VS while retaining spectral accuracy. In [21] the SVV method was
applied in 3D turbulence simulations as an approximation to SEV and
in particular to control high-wavenumber oscillations (in effect to enforce
the Kolmogorov-predicted energy dissipation of high wavenumbers) while
retaining spectral accuracy. Hyperviscous terms, though harder to imple-
ment, can be used in SVV via a discontinuous Galerkin approach.

In [1] we modified (1.3) by applying hyperviscosity spectrally, moti-
vated by the SEV and SVV methodology. Let Ω be a periodic box; for
simplicity assume Ω= (0,L)3. Then, “moding out” the constant vectors as
in standard practice, A has eigenvalues 0<λ1 <λ2 <. . . with corresponding
eigenspaces E1,E2, . . .. Let Pm be the projection onto E1 ⊕E2 ⊕ . . .⊕Em

and let Qm =I −Pm, then we considered as here a class of operators Aϕ =∑∞
j=1 a

(
λj

)
Ej such that Aϕ �Aµ =QmAα in the sense of quadratic forms,

i.e.
(
Aϕv, v

)
�
(
Aµv, v

)
. An SVV-type operator, for example, is obtained

for a distinguished class given by a
(
λj

)=0 for j �m0 �m,0�a
(
λj

)
�λα

j

for m0 � j �m, and aj

(
λj

)
�λα

j for j �m+1, where m0 →∞ as m→∞.
The operators Aϕ are designed in particular to reflect SEV and SVV meth-
odology and in particular the qualitative behavior of (1.2); since as in SVV
we do not need a filtering mechanism kδ is replaced by 1/lε .

The spectrally-hyperviscous NSE we study here as introduced in [1]
are thus

ut +µAϕu+νAu+ (u ·∇) u+∇p =f, (1.4a)

div u=0. (1.4b)

In [1] we demonstrated the global regularity of solutions to (1.4) and
showed that, while higher-order bounds necessarily depend on m, this
dependence is only as a fractional power of it for certain choices of α. In
particular for α =5/2 we obtained growth in the H 1-norm like m1/2, and
for α = 2 we obtained growth like m7/12. We also showed that as m→∞
we have subsequence convergence to a weak Leray solution of the stan-
dard NSE.
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In this paper we will focus on the finite-dimensional asymptotic char-
acter of the system (1.4). First, we will lay some groundwork and show
that for α �3/2 we can obtain better Hβ -estimates on the solution u than
in [1]; the improved estimates also demonstrate the existence of absorb-
ing sets that guarantee that the system (1.5) possesses a global attractor
A. Next we obtain scale-invariant estimates on the Hausdorff and fractal
dimensions of A in terms of the Landau–Lifschitz theory of the number
of degrees of freedom in turbulent flow. For typically-applicable Aϕ in the
distinguished class the estimates stay within the Landau–Lifschitz predic-
tions for a range of m and m0 large enough that at its upper end we heu-
ristically expect virtual identification with NSE solutions. Next we show
that for all Aϕ the system (1.4) has an inertial manifold M of dimen-
sion N >m if α > 5/2. In the special class of Aϕ such that PmAϕ = 0 and
QmAϕ �QmAα we show that whenever α �3/2 we have a unique spectral-
gap property that allows us to construct an inertial manifold M of dimen-
sion m if m is large enough. A similar result holds for large enough m0 for
most of the operators in the distinguished class that we envision will be
used in practice, though for generally larger m and m0 than in the special
class above. We extend the latter result to a certain wider class by extend-
ing our spectral-gap arguments.

Our results for Hβ -estimates and absorbing sets are discussed and
established in Section 2. We now discuss our attractor results. Assume that
f is time-independent, i.e., that f =f (x), and let

Lf =‖f ‖2 ; (1.5)

denote the fractal dimension of A by dimF A and let dimH A denote the
Hausdorff dimension of A.

We will express our primary attractor results in terms of the Kolmogorov
length-scale lε and the Landau–Lifschitz estimates [27] of the number of
degrees of freedom in turbulent flow (see e.g. [16, 33], and the references con-
tained therein). Such estimates will give us useful information about the capa-
bility of (1.4) to approximate NSE dynamics.

Kolmogorov’s mean rate of dissipation of energy in turbulent flow
(see e.g. [16, 22, 33], and the references contained therein) is defined as

ε =λ
3/2
1 ν lim sup

T →∞

T∫

0

∥∥∥A1/2u

∥∥∥
2

2
ds. (1.6)
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The Kolmogorov length scale is

lε =
(

ν3

ε

)1/4

. (1.7)

Let l0 = λ
−1/2
1 ; l0 as so defined is a representation of characteristic mac-

roscopic length, since λ1 ∼L−2. The foundational result for our attractor
estimates is:

Theorem 1. Let lε and l0 be defined as above. Then for a constant Kα

on the order of unity we have that for µ�ν

dimH A�dimF A�Kα [λm/λ1]
9(α−1)

10α

[
l0

lε

] 6α+9
5α

(1.8a)

and that for µ�ν

dimH A�dimF A�Kα

(
ν

µ

) 9
10α

[λm/λ1]
9(α−1)

10α

[
l0

lε

] 6α+9
5α

. (1.8b)

All bracketed constants and Kα are dimensionless, and depend on the
shape (but not the size) of Ω and are thus scale-invariant. Because λm ∼

cm2/3 the growth in m of (1.8) is less than m3/5. The growth in (1.8b) as
µ gets smaller is as the relative size of ν to µ. Set

λm �
(

1
lε

)2

(1.9)

then since 2[9(α − 1)/(10α)] + (6α + 9)/(5α) = 3 we have from (1.8) and
(1.9) the following:

Theorem 2. Let Kα, l0, and lε be as above, then if (1.10) holds we
have if µ�ν that

dimH A�dimF A�Kα

[
l0

lε

]3

(1.10a)

and if µ�ν that

dimH A�dimF A�Kα

(
ν

µ

) 9
10α
[
l0

lε

]3

. (1.10b)
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This result holds independently of α and for Kα and ν/µ independent
of m. Thus for µ�ν we have straight-up agreement with the Landau–Lifs-
chitz predictions ∼[l0/lε ]3 for the number of degrees of freedom in 3D tur-
bulent flow even for very large m.

We now explore various choices of µ � ν. The Chapman–Enskog
expansion suggests the choice µ ∼ να for (1.3); substituting this in (1.8b)
gives

dimH A�dimF A�Kα [(λm/λ1)/ν]
9(α−1)

10α

[
l0

lε

] 6α+9
5α

(1.10c)

and we recover (1.10a) if we assume the modified condition λm �ν(1/lε)
2 or

(λm/λ1)� ν(l0/lε)
2. By (2.15) below the Grashoff number G=Lf /(ν2λ

3/4
1 )

is an upper bound for (l0/lε)
2; assuming this is a sharp upper bound says

that λm/λ1 can be as large as λm/λ1 ∼λ
−3/8
1 L

1/2
f (l0/lε). This would put λm

past 1/lε if |Ω|∼ cλ
−3/2
1 and Lf are both larger than unity. Intuition from

the Kolmogorov theory (see the corresponding remarks in the conclusion)
and SEV/SVV results suggest that solutions of (1.4) in the distinguished-
class case will be good NSE approximants if the wavenumbers up to 1/lε
only see standard NSE viscosity. For operators in the distinguished-class
case such that m0 is not too far from m this suggests that we have good
NSE approximation while (1.10a) holds.

Since (1.3) is (1.4) with m = 0, our spectral considerations suggest
that µ ∼ να is a lower bound for µ for m > 0. The observations in [7]
and (1.2) for large k suggest setting µ ∼ cν where 1/c is within α orders
of magnitude of unity. An application of SVV methodology [21] uses the
choice µ�ν. We discuss these choices in more detail in light of SVV and
SEV considerations at the end of Section 3. The case µ�ν is handled by
(1.10a); the result of plugging the assumption µ ∼ cν into (1.10b) under
the condition (1.9) is:

Theorem 3. Let Kα, l0, cα, and lε be as above, then if (1.10) holds and
c�1 we have for cα = c−9/(10α) that

dimH A�dimF A� cαKα

[
l0

lε

]3

. (1.10d)

Note that cα is within an order of magnitude of unity. With (1.10a)
and (1.10d) we have straight-up and nearly-straight-up agreement with the
Landau–Lifschitz predictions ∼[l0/lε ]3 under the condition (1.9). Thus for
λm as big as (1/lε)

2 and if λm0 is not too far behind, e.g. m0 = m − b

where b<m/2, we have (1.10a), (1.10d) for solutions that we would expect
(by our remarks above regarding 1/lε) to be virtually indistinguishable
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from NSE solutions. In this sense we have globally-regular solutions that
give “approximating” generalizations to 3D of the 2D results obtained in
[11, 14, 31, 32] (see [16, 23] for background and further discussion).

Meanwhile, we would expect lower choices of λm, such as (λm/λ1)�
(l0/lε)

4/3, to still give good NSE approximation, but now with signifi-
cantly lower powers on l0/lε , showing potential of the model for such m

and appropriate m0 to reduce the number of degrees of freedom needed in
practical simulation. Another choice for m0 coming from the SVV meth-
odology (see e.g. [21]) is m0 = 5m1/2 which by (1.9) and λm ∼ cm2/3 says
that λm0 � c1(1/lε) for some c1 > 1. Though the approximation character-
istics are not as robust, by the remarks above we still expect good NSE
approximation while (1.10d) is satisfied.

Since the (dimensionless) Grashoff number G = Lf /(ν2λ
3/4
1 ) in 3D

(see e.g. [16, 33], and the references contained therein) is an upper bound
for (l0/lε)

2 by (2.15) below, expressing the above estimates in terms of G

is straightforward. The term [l0/lε ](6α+9)/(5α) in (1.8) becomes G(6α+9)/(10α)

and [l0/lε ]3 in (1.10) becomes G3/2, while the condition (1.9) becomes
(λm/λ1) � G and in the case µ ∼ να the condition (λm/λ1) � ν(l0/lε)

2

becomes (λm/λ1) � νG. In the latter case this requires that λm/λ1 �
λ

−3/8
1 L

1/2
f G which is now definitely past 1/lε .

For the estimates of attractor dimension we will adapt the part of the
“CFT” methodology (see e.g. [11, 14, 31, 32]), first developed for the 2D
NSE, that relies both on trace formulas and the Lieb–Thirring inequality
(LTI), the latter being first used in this context in [31, 32]. Related results
for weak solutions of the NSE in 3D can be found in [4, 12, 13, 29]. In [15]
for strong solutions of the model known variously as the NS-α, 3D LANS-
α, or 3D Camassa–Holm equations, the CFT/LTI methodology is applied
toward estimating attractor dimension and in the conclusion of this paper
we will compare the attractor estimates developed in [15] with (1.10a–1.10d).

We now discuss results which use the Foias/Sell/Temam theory [17,
18, 33] to show that the system (1.4) possesses an inertial manifold, first
for α > 5/2 in the general case and then for α � 3/2 for certain operators
in the distinguished-class case if m is large enough. We recall the following
definition from [17, 18]; also see [33]:

Definition 4 An inertial manifold M for (1.4) is a finite-dimensional
manifold satisfying:

(i) M is Lipschitz
(ii) M is positively invariant for the semigroup, i.e. S (t)M⊂M for

all t �0.

(iii) M attracts exponentially all the orbits of (1.4).
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Here S (t) is the mapping S (t) u0 = u (t) for each u0 ∈ H. We have
that S is well-defined for (1.4) for all t � 0 since in [3] we demonstrated
that (1.3) has globally-regular (for t >0) solutions for all u0 =u (0) in H =
PL2 (Ω) whenever α>5/4, where P is the Leray projection; that this holds
for (1.4) follows from the fact that Aϕ = Aα − Bα where Bα is a finite-
dimensional (and therefore bounded) perturbation operator relative to Aα.
Our first inertial-manifold existence result for (1.4) holds for all Aϕ when
α >5/2:

Theorem 5. If α >5/2 then the conditions of Definition 4 are satisfied,
so that the system (1.4) has an inertial manifold M.

Theorem 5 turns out to follow fairly straightforwardly from the the-
ory developed in the celebrated results of Foias et al. [17, 18], as presented
in [33]. These works introduced the concept of an inertial manifold and
demonstrated the existence of inertial manifolds for a wide variety of semi-
linear evolutionary systems.

The salient feature of M is that M is a graph over PNH . We
need the spectral-gap properties of the hyperviscous part of Aϕ to prove
Theorem 5 for the entire class of Aϕ , thus we need to assume in Theorem
5 that N >m. To reinforce the idea that we have a good closure model for
the NSE, we want an M such that M is a graph over PmH . For large
enough m this would say, at least for certain distinguished-class Aϕ , that
trajectories on M are controlled by essentially NSE dynamics. By getting
into some of the details of the Foias/Sell/Temam proof we can exploit a
unique spectral-gap property to establish the following; note that it holds
for a wider range of α than Theorem 5.

Theorem 6. Let Aϕ satisfy PmAϕ =0 and QmAϕ �QmAα with α�3/2.
Then for m large enough the system (1.4) has an inertial manifold M of
dimension m.

In proving Theorem 6 we will obtain fairly explicit estimates for the
dimension of M which will be particularly explicit for α�5/2. Meanwhile,
the operators in the distinguished class that we envision will be typically
applied in practice are of the form

a(λj )� (µj/µ)λα
j , m0 +1� j �m (1.11)

with {µj }mj=m0+1 a monotonically-increasing sequence such that 0<µj �µ.
Such operators have basically the same spectral-gap property as the opera-
tor in Theorem 6, but with the gap centered at m0 rather than at m. Thus
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a simple corollary of Theorem 6 is the following inertial-manifold result
for this class of Aϕ :

Theorem 7. Let Aϕ be in the distinguished class with α �3/2 and such
that (1.11) is satisfied. Then for m0 large enough the system (1.4) has an
inertial manifold M of dimension m0.

Since the size of m and m0 in Theorems 6 and 7 will be seen generally
to depend respectively on 1/µ and 1/µm0+1, we expect that we need a sig-
nificantly larger “NSE” part of M in Theorem 7 than in Theorem 6. In
both cases, for large enough m (respectively m0), we have an inertial man-
ifold for a system in which the inertial range essentially behaves according
to standard NSE physics, and in particular trajectories on M are con-
trolled by essentially NSE dynamics.

We can generalize Theorem 7 further by considering a class of oper-
ators Aϕ in which for an integer m1 between m0 and m and a mono-
tonically-increasing sequence of µj with 0 <µj �µ we have that a(λj )=
(µj/µ)λα

j for m1 +1�j �m and such that a(λj )= (µj/µ)λ
ηj α

j for m0 +1�
j �m1 where 0<ηj <1/2. By the last condition on ηj we again will have a
spectral gap, now centered at m1. The following then follows also as a sim-
ple corollary of Theorem 6, and with it we finish stating our main results:

Theorem 8. Let Aϕ , m1, µj , and ηj be as above with α�3/2. Then for
m1 large enough the system (1.4) has an inertial manifold M of dimension
m1.

Section 2 below lays out some preliminary observations and obtains
relevant a priori estimates, including improved Hβ -estimates and absorb-
ing-set estimates needed for the attractor and inertial manifold theory. Sec-
tion 3 proves the estimate (1.8) from which we will show that the attractor
results in (1.10a–1.10d) follow. Section 4 establishes the inertial manifold
results.

2. PRELIMINARIES, A PRIORI ESTIMATES, AND ABSORBING
SETS

We express the Sobolev inequalities on Ω in terms of the operator
A=−�:

‖v‖q �M1
∥∥Aγ v

∥∥
p

(2.1)
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where q � 3p/ (3−2γp) and M1 = M1 (γ,p, q,Ω). For the semigroup
exp (−tA) we have the decay estimate

∥
∥∥e−tAv

∥
∥∥

2
�‖v‖2 e−λ1t (2.2)

and, since A is analytic there is a constant c2 such that
∥∥∥Aβe−tAv

∥∥∥
2
� c2t

−β ‖v‖2 (2.3)

for any β >0 where Aβ is defined by Aβ =∑∞
n=1 λ

β
nEn where as above En

is the projection onto the nth eigenspace. Like the standard NSE, (1.4)
satisfies an energy inequality, which we derive as follows: taking the inner
product of both sides of (1.4) with u we have that

1
2

d

dt
‖u‖2

2 +ν

∥∥∥A1/2u

∥∥∥
2

2
+µ

∥∥∥A1/2
ϕ u

∥∥∥
2

2
= (f, u) (2.4)

noting that since div u = 0 we have that (∇p,u) = 0 and ((u ·∇) u, u) =
− ((div u)u,u)=0. Now

(f, u)=
(
A−1/2f,A1/2u

)
� ν

2

∥∥∥A1/2u

∥∥∥
2

2
+ 1

2ν

∥∥∥A−1/2f

∥∥∥
2

2
(2.5)

and combining (2.5) with (2.4) and multiplying by 2 we have our basic
energy inequality

d

dt
‖u‖2

2 +ν

∥∥∥A1/2u

∥∥∥
2

2
+2µ

∥∥∥A1/2
ϕ u

∥∥∥
2

2
� 1

νλ1
‖f ‖2

2 (2.6)

where we note that by Poincaré’s inequality
∥∥A−1/2f

∥∥
2 �λ

−1/2
1 ‖f ‖2; note

that (2.6) reduces to the standard NSE energy inequality when µ=0. We
will use 2 consequences of (2.6), the first obtained by discarding the term

µ

∥∥
∥A1/2

ϕ u

∥∥
∥

2

2
and again using Poincaré to obtain

d

dt
‖u‖2

2 +νλ1 ‖u‖2
2 � 1

νλ1
‖f ‖2

2 (2.7)

so that, setting

Lf = sup
t�0

‖f ‖2
2 (2.8)

we have that

d

dt
‖u‖2

2 +νλ1 ‖u‖2
2 �

L2
f

νλ1
. (2.9)
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Solving the differential inequality (2.9) we have that for u0 =u (x,0)

‖u (t)‖2
2 �‖u0‖2

2 e−νλ1t +
t∫

0

(
L2

f

νλ1

)

e−νλ1(t−s)ds (2.10)

or, since L2
f / (νλ1) is a constant,

‖u (t)‖2
2 �‖u0‖2

2 e−νλ1t +
(

Lf

νλ1

)2

. (2.11)

Thus, we have the a priori estimate

‖u (t)‖2
2 �‖u0‖2

2 +
(

Lf

νλ1

)2

≡U2
Lf

(2.12)

and we also have from (2.11) that

lim sup
t→∞

‖u (t)‖2 � Lf

νλ1
. (2.13)

Note that (2.13) implies that for any δ > 0 the ball of radius (1+ δ)

L (νλ1)
−1 is an absorbing set in H for all trajectories

⋃
t�0 u (t) .

The second way we use (2.6) is to again discard the term µ

∥∥∥A1/2
ϕ u

∥∥∥
2

and integrate from 0 to T to obtain

‖u (T )‖2
2 +ν

T∫

0

∥∥
∥A1/2u

∥∥
∥

2

2
ds �‖u0‖2

2 +
T∫

0

(
L2

f

νλ1

)

ds (2.14)

from which we obtain

lim sup
t→∞

1
T

T∫

0

∥∥∥A1/2u

∥∥∥
2

2
ds �

L2
f

ν2λ1
(2.15)

which verifies that the left-hand side is finite and gives a useful upper
bound for Theorem 1.

Next, we obtain higher-order a priori estimates. We decompose u as u=
Pmu+Qmu; on PmH the operator Aβ is bounded for any β > 0, and we have
that from (2.12) and the semigroup property of solutions that for t � τ �0

∥∥AβPmu (t)
∥∥

2 �
∥∥Aβ

∥∥
2;PmH

‖u (t)‖2

� λβ
m

[

‖u (τ)‖2 e−νλ(t−τ) +
(

Lf

νλ1

)2
]1/2

(2.16)

so that for a fixed τ >0
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∥∥AβPmu (t)
∥∥

2 �λβ
m

[

‖u (τ)‖2 e−νλ(t−τ) +
(

Lf

νλ1

)2
]1/2

(2.17)

for all t � τ.

Without loss of generality we can assume that Aϕ =Aµ =QmAα =Aα

on QmH , so that for t �τ we have that Qmu satisfies the integral equation

Qmu(t) = Qme−ν(τ−τ)Ae−µ(t−τ)Aα

u (τ)+
t∫

τ

e−ν(t−s)Ae−µ(t−s)Aα

QmPf (s) ds

+
t∫

τ

e−ν(t−s)Ae−µ(t−s)Aα

QmP (u (s) ·∇) u (s) ds (2.18)

where P is the Leray projection; we have used the fact that A and Aα

commute. Applying Aβ to both sides of (2.18), noting that Qm and P

commute with A, and writing e−µtAα = (e−µ(t/2)Aα )2
, we have that

∥∥AβQmu(t)
∥∥

2 �
∥∥∥Aβe−µ(t−τ)Aα

Qmu (τ)

∥∥∥
2
e−νλ1(t−τ)

+
t∫

τ

∥∥∥Aβe−µ(t−s)Aα

f (s)

∥∥∥
2
ds

+
t∫

τ

∥∥
∥Aβe−µ(t−s)Aα

(u ·∇) u

∥∥
∥

2
ds

� µ−β/α

∥∥∥
∥
(
µAα

)β/α
[
e− (t−τ )

2 (µAα)
]2

u (τ)

∥∥∥
∥

2

+µ−β/α

t∫

τ

∥∥∥∥
(
µAα

)β/α
[
e− (t−s)

2 (µAα)
]2

f (s)

∥∥∥∥
2
ds

+µ−β/α

t∫

τ

∥∥∥∥
(
µAα

) [
e− (t−s)

2 (µAα)
]2

(u (s) ·∇) u (s)

∥∥∥∥
2
ds.

(2.19)

Now from (2.1) there is a constant M2 = M1 (3/4,1,2,Ω) such that
‖v‖2 � M2

∥∥A3/4v
∥∥

1 , and note that (u ·∇) u = div (u⊗u) for the appro-
priate tensor product u ⊗ u. Also note that A−1/2div commutes with A

and is a bounded operator on H of norm �1. Writing div (u⊗u) as
A1/2

(
A−1/2div (u⊗u)

)
and using the Sobolev inequality, we have using

(2.2) and (2.3) that
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∥∥AβQmu(t)
∥∥

2 �µ−β/α
∥∥∥
(
µAα

)β/α
e−( t−τ

2 )µAα

u (τ)

∥∥∥
2
e−λα

m(µ/2)(t−τ)

+µ−β/α

t∫

τ

∥∥
∥
(
µAα

)β/α
e−( t−s

2 )µAα

f (s)

∥∥
∥

2
e−λα

m(µ/2)(t−s)ds

+µ− β+1/2
α

t∫

τ

∥∥∥∥
(
µAα

) β+1/2
α e−( t−s

2 )µAα

A−1/2div (u⊗u) e−λm(µ/2)(t−s)

∥∥∥∥
2
ds

� c2µ
−β/α (t − τ)−β/α 2β/α ‖u (τ)‖2 e−λm(µ/2)(t−τ)

+2β/αc2µ
−β/α

t∫

τ

e−λα
m(µ/2)(t−s)

(t − s)β/α
‖f (s)‖2 ds

+µ− β+1/2
α

t∫

τ

∥∥
∥∥A

−1/2div
(
µAα

) β+1/2
α e− (t−s)

2 µAα

u⊗u

∥∥
∥∥

2
e−λm(µ/2)(t−s)ds

� c2 (2/µ)β/α ‖u (τ)‖2
e−λα

m(µ/2)(t−τ)

(t − τ)β/α

+ c2 (2/µ)β/α Lf

t∫

τ

e−λα
m(µ/2)(t−s)

(t − s)β/α
ds

+µ−(β+5/4)/α

t∫

τ

∥
∥∥∥
(
µAα

) β+5/4
α e−(t−s)(µ/2)Aα

(
A−3/4u⊗u

)∥∥
∥

2
e−λm(µ/2)(t−s)ds

� c2 (2/µ)β/α ‖u (τ)‖2
e−λα

m(µ/2)(t−τ)

(t − τ)β/α
+ c2 (2/µ)β/α Lf

t∫

τ

e−λα
m(µ/2)(t−s)

(t − s)β/α
ds

+ c2 (2/µ)
β+5/4

α

t∫

τ

e−λα
m(µ/2)(t−s)

(t − s)
β+5/4

α

∥∥∥A−3/4 (u⊗u)

∥∥∥
2
ds

� c2 (2/µ)β/α

⎡

⎣‖u (τ)‖ e−λα
m(µ/2)(t−τ)

(t − τ)β/α
+Lf

t∫

τ

e−λα
m(µ/2)(t−s)

(t − s)β/α
ds

⎤

⎦

+ c2 (2/µ)
β+5/4

α M2

t∫

τ

e−λα
m(µ/2)(t−s)

(t − s)
β+5/4

α

‖u⊗u‖1 ds. (2.20)
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Now for any 0<γ <1

t∫

τ

e−λα
m(µ/2)(t−s)

(t − s)γ
ds �

∞∫

0

e−λα
m(µ/2)s

sγ
ds

� (1−γ )−1 e−γ
[
λα

m (µ/2)
]γ−1 (2.21)

(see [2] or [18]). So, combining this with (2.21) we have that for t >τ

∥∥AβQmu(t)
∥∥

2 � c2 (2/µ)β/α

[

‖u (τ)‖2
e−λα

m(ε/2)(t−τ)

(t − τ)β/α

+Lf

(
1− β

α

)−1

e−β/α

(
2
µ

)1−β/α 1

λ
α−β
m

]

+ c2M2sup
s�τ

‖u (s)‖2
2 (1−γ )−1 e−γ 2

µ

[
1

λm

]α−(β+5/4)

(2.22)

where γ = (β +5/4) /α.

Note that we have implicitly assumed that β +5/4<α. To simply get
a priori bounds, we can set τ = 0 and use ‖u (s)‖2 �ULf

for all s � 0. To
show the existence of absorbing sets in H 2β , choose τ large enough so
that, using (2.11), ‖u (s)‖2 �

[
(1+ δ0)Lf

]
/ (νλ1) for all s �τ , then we have

from (2.23), using λm ∼ cλ1m
2/3, and simplifying, that

lim sup
t→∞

∥∥AβQmu(t)
∥∥

2 � c2

[
α

α −β
e−β/α

](
2
µ

)
1

λ
α−β
m

Lf

+ c2M2 (1+ δ0)
2
[

α

α − (β +5/4)
e−(β+5/4)/α

]

×
(

2
µ

)
1

λ
α−(β+5/4)
m

(
Lf

νλ1

)2

= c2

[
α

(α −β)eβ/α

]
2λ

1+β−α

1

cα−βm2(α−β)/3

(
ν

µ

)
Lf

νλ1

+ c2M2 (1+ δ0)
2
[

α

[α − (β +5/4)]e(β+5/4)/α

]

×
(

2
µ

)
1

λ
α−(β+5/4)
m

(
Lf

νλ1

)2

≡ K
α,µ,m

1
Lf

νλ1
+K

α,µ,m

2

(
Lf

νλ1

)2

. (2.23)
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Note that the powers on λm or m in the denominators of the
right-hand side of (2.23) are positive, so that K

α,µ,m
i decreases as m

increases, i = 1,2. In particular, since it is safe to assume that λm � 1, we
have that K

α,µ,m
i �K

α,µ
i for constants K

α,µ
i independent of m. Combining

with (2.17), we have that

lim sup
t→∞

∥
∥Aβu (t)

∥
∥2

2 � (λ2β
m +K

α,µ,m

1 )
Lf

νλ1
+K

α,µ,m

2

(
Lf

νλ1

)2

≡ρm,β (2.24)

so that the ball of radius ρβ = (1+ δ)
(
ρm,β

) 1
2 in PH 2β is an absorbing set

for all trajectories.
Note again that in (2.23) we obtain an a priori bound on

∥∥Aβu (t)
∥∥

2
for all t > 0 by setting τ = 0 and by replacing sup

s�τ

‖v (s)‖2 by ULf
; if

u (0)=u0 is in D
(
Aβ
)
, the domain of Aβ , then we can remove the coeffi-

cient (t − τ)−β/α = t−β/α. We have noted that we need β + 5/4 <α, which
says that β < 1/4 for α = 3/2, β < 3/4 for α = 2, β < 5/4 for α = 5/2,

β < 7/4 for α = 3, β < 9/4 for α = 4, and so on. Note also the connec-
tion with the Kolmogorov theory in that the right-hand side of (2.22)
is small for large m. In particular, again using λm ∼ cλ1m

2/3, we have
that λ

α−(β+5/4)
m ∼ (cλ1)

α−(β+5/4) m2[α−(β+5/4)]/3; if e.g. β =1/2 we have that
2[α − (β + 5/4)]/3 � 1 when 2(α − 7/4) � 3 or α � 13/4. Thus, when, say,
α>3, the right-hand side of (2.22) is significantly small. Note further that
as long as α > 7/4 we can have β � 1/2 in (2.22) and (2.23); to get esti-
mates on

∥∥Aβu (t)
∥∥

2 for β � 1/2 when 3/2 � α � 7/4, we need to boot-
strap the estimate (2.22). Standard techniques can do this, of course, but
the estimates will be a bit messy, so we omit the details here.

We also note that (2.22) improves our estimates in [1]: when β = 1/2
we have overall growth in m like m1/3, rather than m1/2 for α = 5/2 and
m7/12 for α = 2, and here this growth is as m1/3 for all α. This concludes
our discussion of preliminary results.

3. PROOF OF THE ATTRACTOR ESTIMATES

We follow the development in ([33], Chapters V and VI); if we write
(1.5) as

du (t)

dt
=F (u (t)) , t >0 (3.1a)

u (0)=u0 (3.1b)
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with solution S (t) :u0 ∈H →u (t)∈H then the linearized problem is

dU (t)

dt
=F ′ [S (t) u0] ·U (t) (3.2a)

U (0)= ξ ∈H. (3.2b)

For u0 fixed in H , let ξ1, . . . , ξM be M elements of H and let U1, . . . ,UM

be the corresponding solutions of (3.2). Let qM = qM (t, u0; ξ1, . . . , ξM) be
the projection qMH = span {U1, . . . ,UM } , and let ϕ1 (t) , . . . , ϕM (t) be an
orthonormal basis for qM (t)H . We need to find M so that uniformly in
space and asymptotically in time

0 � TrF ′ (S (t) u0)◦qM (t)

=
∞∑

j=1

(
TrF ′ (u (t))◦qM (t) ϕj (t) , ϕj (t)

)

=
m∑

j=1

(
F ′ (u (t)) ϕj (t) , ϕj (t)

)
. (3.3)

Now
(
F ′ (u) ·ϕj , ϕj

) = −ν
(
Aϕj ,ϕj

)−µ
(
Aϕϕj , ϕj

)

− ((ϕj ·∇)u,ϕj

)
�−ν

(
Aϕj ,ϕj

)−µ
(
QmAαϕj , ϕj

)

− ((ϕj ·∇)u,ϕj

)
and

∣∣∣∣∣∣

M∑

j=1

((
ϕj ·∇)u,ϕj

)
∣∣∣∣∣∣
�
∫

Ω

∣∣∣∣∣∣

M∑

j=1

3∑

i,k=1

ϕji (x)Diuk (x)ϕjk (x)

∣∣∣∣∣∣
dx. (3.4)

For each x we have that
∣∣∣∣∣
∣

M∑

j=1

3∑

i,k=1

ϕji (x)Diuk (x)ϕjk (x)

∣∣∣∣∣
∣
� |Du(x)|ρ (x) (3.5)

where

|Du(x)|=
⎧
⎨

⎩

3∑

j,k=1

|Diuk (x)|2
⎫
⎬

⎭

1/2

(3.6)

and

ρ (x)=
3∑

i=1

M∑

j=1

(
ϕji (x)

)2
. (3.7)
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Combining the above observations with (3.3) we have that

TrF ′ (S (t) u0)◦qm (t) � −ν

M∑

j=1

∥∥∥A1/2ϕj (t)

∥∥∥
2

2

−µ

M∑

j=1

∥
∥∥QmAα/2ϕj (t)

∥
∥∥

2

2
+
∫

Ω

|Du|ρdx. (3.8)

We now prepare to use the generalized form of the Lieb–Thirring
inequality in dimension n = 3 as developed in [33]: let a (v, u) be a coer-
cive quadratic form of order m0 then for e.g. ϕj as above we have:

Theorem 9. (Lieb–Thirring Inequality)
⎛

⎜
⎝
∫

Ω

ρ (x)q/(q−1) dx

⎞

⎟
⎠

2m0(q−1)/3

�K1

M∑

j=1

a
(
ϕj , ϕj

)
(3.9)

for all q ∈
(

max
{

1, 3
2m0

}
,1+ 3

2m0

)
and where K1 depends on m0, p, and q,

and on the shape (but not the size) of Ω.

The quadratic form we will use is a (v, u)= (Aαv,u)= (Aα/2v,Aα/2u
)

so that the order of our quadratic form is m0 =α. We have that Theorem 6
holds provided that q = 1 + 3/(2α) so that p = q/(q −1) = (2α)/3 + 1 =
(2α +3)/3 where p−1 + q−1 = 1. Note that q = 2 when α = 3/2, obtaining
the 3D analog of (3.9) for the 2D case (where we substitute 2 for 3 in
(3.9)). Note also that 2m0 (q −1)/3= [2α (3/(2α))]/3=1. For q =1+3/(2α)

we apply Young’s inequality in the form

ab� εpap + cεpbq (3.10)

where

cεp = p −1

pqε
1/(p−1)
p

(3.11)

to obtain that
∫

Ω

|Du|ρdx � ‖ρ‖p ‖Du‖q

� εp ‖ρ‖p
p + cεp

‖Du‖q
q (3.12)

where εp is to be chosen later.
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Applying (3.9–3.11) to (3.8), we have (with q/(q −1)=p) that

TrF ′ (S (t) u0)◦qM (t) � −ν

M∑

j=1

∥∥∥A1/2ϕj (t)

∥∥∥
2

2

−µ

M∑

j=1

∥∥∥QmAα/2ϕj (t)

∥∥∥
2

2
+
∫

Ω

|Du|ρdx

� −ν

M∑

j=1

∥
∥∥Aα/2ϕj (t)

∥
∥∥

2

2
−µ

M∑

j=1

∥
∥∥QmAα/2ϕj (t)

∥
∥∥

2

2

+ εp

∫

Ω

ρpdx + cεp
‖Du‖q

q

� −ν

M∑

j=1

∥∥∥A1/2ϕj (t)

∥∥∥
2

2
−µ

M∑

j=1

∥∥∥QmAα/2ϕj (t)

∥∥∥
2

2

+ εpK1

M∑

j=1

∥
∥∥Aα/2ϕj (t)

∥
∥∥

2

2
+ cεp

‖Du‖q
q . (3.13)

Now
∥
∥Aα/2ϕj (t)

∥
∥2

2 =∥∥PmAα/2ϕj (t)
∥
∥2

2 +∥∥QmAα/2ϕj (t)
∥
∥2

2 and we have
that

∥
∥∥PmAα/2ϕj (t)

∥
∥∥

2

2
�
∥
∥∥PmA

α−1
2

∥
∥∥

2

2

∥
∥∥A1/2ϕj (t)

∥
∥∥

2

2

� λα−1
m

∥∥∥A1/2ϕj (t)

∥∥∥
2

2
. (3.14)

We first assume that

µ�ν and λ(α−1)
m �1 (3.15)

so that, choosing

εp = µ

2λα−1
m K1

(3.16)

we have, with (3.14) and (3.15),

εpK1

M∑

j=1

∥∥∥Aα/2ϕj (t)

∥∥∥
2

2

�
(

µ

2λα−1
m K1

)
K1

⎡

⎣λα−1
m

M∑

j=1

(∥∥∥PmA1/2ϕj (t)

∥∥∥
2

2
+
∥∥∥QmAα/2ϕj (t)

∥∥∥
2

2

)⎤

⎦
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�
(

µ

2λα−1
m

)
λα−1

m

⎡

⎣
M∑

j=1

∥∥∥A1/2ϕj (t)

∥∥∥
2

2
+

M∑

j=1

∥∥∥QmAα/2ϕj (t)

∥∥∥
2

2

⎤

⎦

� µ

2

⎡

⎣
M∑

j=1

∥∥∥A1/2ϕj (t)

∥∥∥
2

2
+

M∑

j=1

∥∥∥QmAα/2ϕj (t)

∥∥∥
2

2

⎤

⎦

� ν

2

M∑

j=1

∥∥∥A1/2ϕj (t)

∥∥∥
2

2
+ µ

2

M∑

j=1

∥∥∥QmAα/2ϕj (t)

∥∥∥
2

2
. (3.17)

Combing (3.16) and (3.17) we have

TrF ′ ((S (t) u0)◦qM (t)) � −ν

2

M∑

j=1

∥∥∥A1/2ϕj (t)

∥∥∥
2

2

−µ

2

M∑

j=1

∥∥∥QmAα/2ϕj (t)

∥∥∥
2

2
+ cεp

‖Du‖q
q . (3.18)

We will discard the term involving QmAα/2ϕj in (3.18) to develop what
we need for Theorems 1–3; it seems like a lot of potential power to throw
away, but the alternative needs that M is significantly larger than m, which
we want to avoid given the Kolmogorov intuition and the direct connec-
tion with our inertial-manifold estimates. For the term ‖Du‖q

q , we have by
Holder’s inequality that

‖Du‖q
q � ‖1‖q

q ′′ ‖Du‖q

2

� |Ω| 2α−3
4α ‖Du‖1+3/(2α)

2 (3.19)

where we have used q =1+3/(2α) and q ′′ = (4α +6)/(2α −3). Now using
that ‖Du‖2 �

∥
∥A1/2u

∥
∥

2, using Holder’s inequality on 1
T

∫ T

0

∥
∥A1/2u

∥
∥q

2 ds,
and using (3.11), (3.16), and (3.19), we have from (3.18) that to have

lim sup
∫ T

0
T →∞

TrF ′ ((S (t)) u0)◦qm (t) dt �0 uniformly in space we need

ν

2

M∑

j=1

∥
∥∥A1/2ϕj (t)

∥
∥∥

2

2
� c′

α

µ3/(2α)
λ

3(α−1)
2α

m |Ω| 2α−3
4α

⎡

⎣lim sup
T →∞

1
T

T∫

0

∥
∥∥A1/2u

∥
∥∥

2

2
ds

⎤

⎦

2α+3
4α

(3.20)
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where

c′
α = 2α

3

[
3

2α +3

] 2α+3
2α

23/(2α)K
3/(2α)

1 . (3.21)

Now, by ([33], Lemma VI.2.1)

M∑

j=1

∥
∥∥A1/2ϕj (t)

∥
∥∥

2

2
�λ1 + . . .+λM � c′λ1M

5/3 (3.22)

since in 3D (see e.g. [33])

λj ∼ cλ1j
2/3.

Here c′ = (3/5)c is a dimensionless constant depending only on the shape
(and not the size) of Ω. Letting cα = (2c′

α

)
/c′, we combine (3.22) with

(3.20) to obtain the condition

M5/3 � cα

λ1νµ3/(2α)
λ

3(α−1)
2α

m [Ω]
2α−3

4α

⎡

⎣lim sup
T →∞

1
T

T∫

0

∥∥∥A1/2u

∥∥∥
2

2
ds

⎤

⎦

2α+3
4α

(3.23)

to be satisfied for M. If we use (2.15) we obtain for K ′
α =c

3/5
α the estimate

M � K ′
α

(λ1ν)3/5 µ9/(10α)
λ

9(α−1)
10α

m |Ω| 6α−9
20α

[
L2

f

ν2λ1

] 6α+9
20α

. (3.24)

As in the introduction, set

ε =λ
3/2
1 ν lim sup

T →∞
1
T

T∫

0

∥
∥∥A1/2u (s)

∥
∥∥

2

2
ds (3.25)

then using K ′
α = c

3/5
α as above and (3.23) we have

M � K ′
α

λ
3/5
1 ν3/5

1

µ
9

10α

λ
9(α−1)

10α
m |Ω| 6α−9

20α

[
ε

λ
3/2
1 ν

] 6α+9
20α

. (3.26)

Now set

lε =
(

ν3

ε

)1/4

; (3.27)
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lε is the Kolmogorov length scale; by rearranging terms in (3.26) we have for

l0 = 1

λ
1/2
1

(3.28)

that

M � K ′
α

ν3/5λ
3/5
1 µ

9
10α

λ
9(α−1)

10α
m |Ω| 6α−9

20α ν
6α+9
10α λ

6α+9
40α

1

[
l0

lε

] 6α+9
5α

. (3.29)

Now note that

|Ω|∼ cλ
−3/2
1 ; (3.30)

setting Kα =c
6α−9
20α K ′

α and by combining and rearranging terms in (3.29) we
have that

M �Kα

(
ν

µ

) 9
10α [

λml2
0

] 9(α−1)
10α

[
l0

lε

] 6α+9
5α

. (3.31)

We have used l0 as is standard as a characteristic macroscopic length scale.
This establishes (1.8b).

In the case µ � ν it is still safe to assume λ
(α−1)
m � 1; meanwhile we

replace µ by ν in (3.16) and in the second, third, and fourth lines of
(3.17); because of µ � ν the last line of (3.17) remains the same. The
replacement of µ by ν in (3.16) also means that we need to replace µ by ν

in (3.23). Following through the development without combining with the
other factors of ν allows us to see that we now need only replace µ by ν

in (3.31). Thus we see that the condition µ� ν allows us to eliminate the
term (ν/µ)

9
10α which gives (1.8a). Thus Theorem 1 is established.

Meanwhile, note in (3.31) that λml2
0 = λm/λ1 is independent of the

size of Ω by virtue of λm ∼cλ1m
2/3 where c is dimensionless and depends

only on the shape (but not the size) of Ω, and by design l0/lε is similarly
normalized; Kα depends only on α and K1 from (3.9), and so depends
only on the shape of Ω as well. Meanwhile ν is or can be taken to be
dimensionless since typically it is chosen as the ratio of the mean free path
and the characteristic macroscopic scale. Similar normalization consider-
ations hold for µ. Thus all the bracketed terms in (3.31) are dimensionless,
and may depend on the shape, but not the size, of Ω and are thus scale-
invariant.

Now suppose that

λm �
(

1
lε

)2

(3.32)
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then λml2
0 �
(

l0
lε

)2
and since

2
(

9 (α −1)

10α

)
+ 6α +9

5α
= 15α

5α
=3 (3.33)

the condition (3.32) combined with (3.31) gives the simple condition

M �Kα

(
ν

µ

) 9
10α
(

l0

lε

)3

(3.34)

for µ � ν and (1.10a) for µ � ν. With (3.24), (3.31), and (3.34) we have
established (1.8) and (1.10a–1.10b). By substituting respectively µ�να and
µ∼ cν we obtain (1.10c) and (1.10d).

For the rest of this section we discuss how (1.2) and the observations
in [7] in the context of SEV motivate the choice µ∼cν where 1/c is within
α orders of magnitude of unity, and discuss an example of SVV method-
ology that uses µ�ν. The next technical results appear in Section 4.

To motivate the choice µ∼cν, we note that in [7] the spectral viscos-
ity is studied in the limit δ → lε , and since for at least theoretical rea-
sons we want λm to be at least high enough to be in the neighborhood of
lε , setting kδ = lε seems an appropriate starting point for letting (1.2) sug-
gest a lower bound on µ. Letting k→kδ increases the size of (1.2) already
by more than twofold over its value at k = 0; as k → ∞ the size of (1.2)
increases by at least an order of magnitude.

A related quantity studied in [7] is νhyp (k, kδ), the spectral viscosity of
a mixed hyperviscosity model for α =2. In ([7], Fig. 15) measurements of
the ratio νhyp (k, kδ)/(ε

1/3δ4/3) are plotted against kδ. Since in [7] ε1/3δ4/3

is used for viscosity, where ε is as in (3.25), ([7], Fig. 15) is basically a plot
of µ/ν in this case (in the notation in [7] � denotes δ). A common value
of the Kolmogorov constant is Ck = 2.1, for which the plot reflects most
closely the profile (1.2). As k moves past 1/δ ∼kδ the plot rises quickly in
this case, and soon the ratio νhyp (k, kδ)/(ε

1/3δ4/3) is not orders-of-magni-
tude small but on the order of 15% or 20%. (Other values of Ck give dif-
ferent behavior, but still the ratio νhyp (k, kδ)/(ε

1/3δ4/3) stays between 5%
and 15%.)

These considerations for the case α=2 suggest that it is reasonable to
choose µ as large as µ∼cν with 1/c within 2 orders of magnitude of unity
when λm is at or beyond 1/lε , and in general within α orders of magni-
tude of unity for λm at or beyond 1/lε . To establish a number of our ideas
and explore their theoretical consequences we have also looked at λm far
beyond that, e.g. we have looked at λm � (1/lε)

2. As noted, extrapolating
in (1.2) for very large k suggests an increase of µ by at least an order of
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magnitude; extrapolating from the plot in ([7], Fig. 15) for Ck = 2.1 and
very large k suggests an increase for µ up to µ ∼ cν with 1/c within an
order of magnitude of unity.

The 3D turbulent-channel simulations in [21] use µ � ν. Accu-
rate agreement with both DNS simulations and experimental results are
achieved in [21] for Reynolds numbers in the 100s, while the coeffi-
cient µ of the extra viscosity kernels is the reciprocal of the spectral or
polynomial order P of the approximation, the largest value of P taken
to be 21. The implication in SVV terms is that µ → 0 as P → ∞, but
the idea is that as P → ∞ we approach direct numerical simulation of
the NSE. Since the goal of SVV is to reduce the number of degrees of
freedom needed for accurate simulation as compared with direct numeri-
cal simulation, P in general practice of SVV will generally be smaller than
typical Reynolds numbers in turbulence simulations. This concludes our
discussion of motivations for the choices µ∼ cν and µ�ν.

4. EXISTENCE OF AN INERTIAL MANIFOLD

For the results of this section we will use Theorem 3.2 of ([33], Chap-
ter VIII), which we will refer to (and state below) as Theorem GFST. It
generalizes the conditions of the main theorems of the Foias/Sell/Temam
papers in a way that handles (1.4) for all α > 5/2 in the case of general
Aϕ and for all α�3/2 for certain operators in the distinguished-class case.
Theorem GFST applies to systems of the form

du

dt
+A1u+R (u)=f, (4.1a)

u (0)=u0 (4.1b)

for various general conditions on A1, a linear operator with dense domain
in a Hilbert space H , and R a bounded map from D

(
A

β

1

)
into D

(
A

β−γ

1

)

for β, γ non-negative constants to be determined below. For the system
(1.4) we first set

A1 =µAα (4.2)

and

R (u)=νA−µPm

(
Aα −Aϕ

)− (u ·∇) u; (4.3)

note that µAϕ =µAα − (µPmAα −µPmAϕ

)
. The first purpose of this sec-

tion will be to show that (1.4) satisfies the conditions of Theorem GFST
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and therefore prove Theorem 5 above for A1 and R (u) as in (4.2), (4.3)
and H as in the previous sections. Theorem GFST requires the following
hypotheses:

(1) For every u0 ∈ D
(
A

β

1

)
, (4.1) has a unique solution u ∈ C

(
R+;D

(
A

β

1

))
∩ L2

(
(0, T );D

(
A

β

1

))
∀T > 0, and the mapping

S (t) :u0 →u (t) is continuous from D
(
A

β

1

)
into itself.

(2) S (t) possesses an absorbing set B0 in D
(
A

β

1

)
, which is

positively invariant (S (t)B0 ⊂B0∀t �0). The ω-limit set of B0,
denoted A, is the maximal attractor for S (·) in D

(
A

β

1

)
.

(3) For some β �0 and γ �0 as in 5) below,
∥∥∥Aβ−γ

1 R (u)−A
β−γ

1 R (v)

∥∥∥
2
�CM

∥∥∥Aβ

1 (u−v)

∥∥∥
2

(4.4)

for all u, v ∈D
(
Aβ
)
,

∥∥∥Aβ

1 u

∥∥∥
2
�M,

∥∥∥Aβ

1 v

∥∥∥
2
�M.

(4) There exists a ρ >0 such that the ball of radius ρ/2 centered at
0 in D

(
A

β

1

)
is absorbing for (1.4).

(5) Let λ1
N be the eigenvalues of A1, then there exists a function

Km0 =Km0 (N) such that for N �m0

λ1
N+1 −λ1

N �Km0 (N)
((

λ1
N+1

)γ +
(
λ1

N

)γ )
(4.5)

where Km0 (N)→∞ as N →∞.

Note that the estimates in Section 2 give (1), (2), and (4). We will
demonstrate (3) and (5) below.

Let PN project onto the first N eigenspaces of A1 and let QN = I −
PN . Let Fβ

b,l be the class of Lipschitz functions Φ from PND
(
A

β

1

)
into

QND
(
A

β

1

)
satisfying

SuppΦ=
{
y ∈PND

(
A

β

1

)
:
∥∥∥Aβ

1 y

∥∥∥
2
�2ρ

}
, (4.6a)

∥∥∥Aβ

1 Φ (y)

∥∥∥
2
�b ∀y ∈PND

(
A

β

1

)
, (4.6b)

∥∥∥Aβ

1 Φ (y1)−A
β

1 Φ (y2)

∥∥∥
2
� l

∥∥∥Aβ

1 (y1 −y2)

∥∥∥
2

(4.6c)

where b, l >0 are to be chosen.



504 Avrin

The inertial manifold M will be the graph {y,Φ (y)} for y ∈PN (H) of
a fixed point Φ of a certain map F ; b, l are chosen in the proof of The-
orem GFST so that the map F is a contraction on Fβ

b,l .

Now choose a C∞ function θ : R+ → [0,1] such that θ (s)= 1 for 0 �
s �1, θ (s)=0 for s �2, and sup

s�0

∣∣θ ′ (s)
∣∣�2, and set θρ (s)= θ (s/ρ) .

For

Rθ (u)= θρ

(∥∥Aαu
∥∥

2

)
R (u), (4.7)

following [17, 18, 33] the “prepared equation” corresponding to (4.1) is

du

dt
+A1u+Rθ (u)=0, (4.8a)

u (0)=u0. (4.8b)

Now consider for Φ∈Fb,l the two equations

dy

dt
+A1y +PNRθ (y +Φ (y))=PNf, (4.9a)

dz

dt
+A1z+QNRθ (y +Φ (y))=QNf. (4.9b)

The main ideas of the proof of Theorem GFST are as follows: let y =
y (t;y0,Φ) be the unique solution of (4.9a). Since QNRθ (y +Φ (y)) is now
a known function, we denote the solution of (4.9b) by z=z (t;y0,Φ). The
function F is defined as

(FΦ) (y0)= z (0;y0,Φ)

and by uniqueness of (forward and backward) trajectories is well-defined
as a map from PND

(
A

β

1

)
to QND

(
A

β

1

)
. In fact we have the formula

F (Φ (y0))=−
0∫

−∞
eτA1QNRθ (y (τ)+Φ (y (τ ))) dτ. (4.10)

With these considerations we can state

Theorem GFST For a given l ∈ (0,1/8) there exists a b>0 such that F
is a strict contraction on Fβ

b,l , and therefore possesses a unique fixed point

ΦM∈Fβ
b,l . Furthermore, the graph of ΦM is an inertial manifold for (4.1).
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Theorem GFST applies to a wide variety of equations in mathematical
physics, as detailed in [17, 18, 33]. We have shown in Section 2 that the hypoth-
esis (1), (2), (4), are satisfied for (1.4), in particular we have an absorbing set
{v : ‖Aβ0v‖2 �2ρ} if we take β0 =β/α in (2.24) and take ρ =2µ−β0ρβ where ρβ

is defined immediately after (2.24). For the next part of this section we examine
hypothesis (3) and (5) to show that Theorem GFST applies to (1.4), and thus
prove Theorem 5.

For (3) we first verify that whenever 5�4β1 +4γ1
∥∥Aβ1−γ1R1 (u)−Aβ1−γ1R1 (v)

∥∥
2 �C1

M

∥∥Aβ1 (u−v)
∥∥

2 (4.11)

for A=−� and

R1 (u)= (u ·∇) u. (4.12)

Such estimates are basically shown in [17, 18, 33], at least in the special
cases needed, but for completeness we present a complete development of
(4.11) for all indicated values of β1 and γ1. We first assume that

s =γ1 −β1 �0; (4.13)

we have that
∥∥A−sR1 (u)−A−sR1 (v)

∥∥
2

�
∥∥A−s ((u−v) ·∇u)

∥∥
2 +∥∥A−s (v ·∇) (u−v)

∥∥
2 . (4.14)

Now
∥∥A−s (u−v) ·∇u

∥∥
2 �M2 ‖(u−v) ·∇u‖p (4.15)

for 2 = 3p/(3−2sp) and where M2 is M1 for this choice of p, i.e. p =
6/(3+4s). Then

‖(u−v)∇u‖p �‖u−v‖ap ‖∇u‖bp (4.16)

where 1/a +1/b=1. We want (note β1 =γ1 − s)

‖u−v‖ap �M3
∥∥Aβ1 (u−v)

∥∥
2 (4.17)

where M3 is the appropriate choice of M1; (4.17) requires that

a = 3+4s

3+4s −4γ1
(4.18)

so that

b= 3+4s

4γ1
(4.19)
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and

bp = 3
2γ1

. (4.20)

We then need

‖∇u‖bp =‖∇u‖3/(2γ1)
�M4

∥∥Aβ1u
∥∥

2 ; (4.21)

after some arithmetic, this is seen to hold provided that

5�4β1 +4γ1. (4.22)

A similar development holds for the other term on the right-hand side of
(4.14), for M2,M3, and M4 as above. Let

M5 =max {M3,M4} (4.23)

then for
∥∥Aβ1u

∥∥
2 �M,

∥∥Aβ1v
∥∥

2 �M, we have (4.11) for

C′
M =M2M5M. (4.24)

We now show that (4.11) holds for

β1 −γ1 �0. (4.25)

The leading terms of
∥
∥Aβ1−γ1R1u

∥
∥

2 are
∥
∥Aβ1−γ1uA1/2u

∥
∥

2 and∥∥uA1/2+β1−γ1u
∥∥

2. We have that
∥∥∥Aβ1−γ1uA1/2u

∥∥∥
2
�
∥∥Aβ1−γ1u

∥∥
2a

∥∥∥A1/2u

∥∥∥
2b

(4.26)

where 1/a + 1/b = 1. Choosing M6 to be the appropriate value of M1 we
have that

∥
∥∥A1/2u

∥
∥∥

2b
� M6

∥∥Aβ1u
∥∥

2

= M6

∥∥∥Aβ1−1/2A1/2u

∥∥∥
2

(4.27)

provided that b = 3/(5−4β1) and hence a = 3/(4β −2). Then there is an
M7 such that

∥∥Aβ1−γ1u
∥∥

2a
�M7

∥∥Aβ1u
∥∥

2 (4.28)

provided that 2a = 6/(4β1 −2) � 6/(3−4γ1) which says that 4β1 − 2 �
3−4γ1 or, again, 5�4β1 +4γ1 which is (4.22) for the case β1 −γ1 �0.
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It is now clear that similar inequalities hold when Aβ1−γ1 is applied to
(u−v) · ∇u and (v ·∇) (u−v). Thus, (4.11) holds whenever (4.22) is satis-
fied, with a C′′

M replacing C′
M in (4.24), where M6 and M7 replace M2 and

M5. We now establish (3) for α >5/2.

Replace A by µAα in (4.11), then (4.4) holds with γ =γ1/α and β =
β1/α, and C′′

M and C′
M now multiplied by µ−γ . There are two more terms

in R (u), namely A2 = µPm

(
Aα −Aϕ

)
and νA. In the sense of quadratic

forms A
β−γ

1 µPm

(
Aα −Aϕ

)
�A

β

1 (µAα)−γ µPmAα =A
β

1 µ1−γ PmAα−γα �µ1−γ

λ
(1−γ )α
m A

β

1 so that A2 satisfies (4.4) by Poincaŕe with CM replaced by
µ1−γ λ

(1−γ )α
m . For νA to satisfy (4.4), it is clear that we need Aα(β−γ )A�

Aαβ or Aα(β−γ+1/α) �Aαβ , i.e.

β −γ +1/α �β (4.29)

or 1/α �γ , which says

1�γα. (4.30)

We will see below in handling (5) that α and γ satisfy

γ <
2α −3

2α
(4.31)

in order to have a spectral gap; for (4.30) this means that

1<
2α −3

2
(4.32)

which gives us the condition α > 5/2. Thus, if (4.32) holds then νA satis-
fies (4.4) with C′′′

M =ν/ε. Combining this with our observations for A2 and
R1 (u), we have that (4.4) and hence (3) is satisfied for

CM =max{µ−γ C′
M,µ−γ C′′

M}+µ1−γ λ
(1−γ )α
m +ν/µ (4.33)

provided that α >5/2 and

5
α

�4β +4γ, (4.34)

i.e. 5�4β1 +4γ1. Note from (4.31) that we have

5
α

<4β + 4α −6
α

(4.35)

and we can take β =0 provided that 5<4α −6 or

11/4<α. (4.36)
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For 5/2<α�11/4 we need 5<4βα+4α−6 or 11−4α<4β1 or 11/4−α<

β1; the supremum of the values needed for α in this range is β1 = 11/4 −
5/2=1/4, easily handled by the bounds and absorbing set results on Aβ1u

established in Section 2. Thus (3) is satisfied for all α >5/2.

To establish (5) we use ([33], Lemma VIII.4.1) which states that

Lemma T. If λ1
N ∼ cNα1 as N → ∞ and α1 > 1/ (1−γ ) then (4.5) is

satisfied for arbitrarily large N ’s.

Given that λn ∼ cλ1n
2/3 we have that the eigenvalues of A1 satisfy

λ1
N = µλα

N ∼ cµλ1N
α1 for α1 = (2/3) α. Solving for γ in the equation

(2/3) α > 1/ (1−γ ) gives (4.31). Note that (4.31) is satisfied, i.e. gives a
positive value of γ , whenever α > 3/2, in particular when α > 5/2. (Note
that it is the development in (4.29–4.32) that dictates the condition α>5/2
rather than α > 3/2.) With (1–5) satisfied for α > 5/2, we thus have The-
orem 5 by Theorem GFST. Note that the size of N depends on m from
(4.33).

For Theorem 6 we let α � 3/2 and consider Aϕ such that PmAϕ = 0
and QmAϕ � QmAα; we use a unique spectral-gap property of this oper-
ator, wherein by certain choices of A1 we can produce a spectral gap
between λ1

N+1 and λ1
N with N = m inherent in the structure of A1 and

independent of (4.31). We first prove Theorem 6 assuming α �5/2, µ�ν,
and Aϕ =QmAα for which we can take γ =1/2 and β =0. The main ideas
of the proof are simpler in this case and more closely resemble the argu-
ments above. Now we set

A1 =µPmA+µAϕ =µ(PmA+QmAα), (4.37)

R (u)= (u ·∇) u+ (ν −µ)PmA+νQmA. (4.38)

Borrowing a technique from [1] we set A1 =µNα−1Aα where N =PmA−1 +
QmI . Note that for s >0

N−s �λs
mI (4.39)

in the sense of quadratic forms. Thus all the above estimates involving
(4.11) and (4.34) hold for the new A1 in place of µAα with the modifica-
tion from (4.39) that with s =γ −β =γ =1/2 we need to multiply C′

M and
C′′

M above by µ−1/2λ
(α−1)/2
m . To obtain (4.4) it remains to take care of the

term A2 ≡ (ν −µ)PmA+ νQmA in R (u): note that (ν −µ)A�A2 � νA in
the sense of quadratic forms, so since α�5/2>2 we have from (4.39) that
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A
−1/2
1 A2 �νA

−1/2
1 A=νµ−1/2N(α−1)/2A−α/2A�νµ−1/2λ

(α−1)/2
m A−((α/2)−1) �

νµ−1/2λ
(α−1)/2
m λ

−((α/2)−1)

1 I . Thus we now obtain (3) with

CM =µ−1/2λ
(α−1)/2
m max{C′

M,C′′
M}+νµ−1/2(λ

(α−1)/2
m λ

−((α/2)−1)

1 ). (4.40)

Now (2.24) reduces to (2.13) since β = 0 and thus we can take for
some δ >0

ρ =2(1+ δ)

(
Lf

νλ1

)
. (4.41)

Note (1–4) are now satisfied for the new choices of A1 and R(u) in (4.37),
(4.38).

Now set

MT
1 = sup∥

∥
∥A

β1
1 u

∥
∥
∥�2ρ

∥∥
∥Aβ1−γ1

1 R (u)

∥∥
∥

2
; (4.42a)

note that since R(0)=0

MT
1 �C2ρ (4.42b)

where C2ρ is CM with M =2ρ; set

MT
2 = 2MT

1

ρ
+C2ρ. (4.42c)

As in the proof of Theorem GFST, for σ �0 set

κ2 (σ ) = σσ e−σ , κ3 (σ )

= e−σ + κ2 (σ )1−σ

1−σ
, (4.43)

and

κ4 =κ3 (γ )=κ3(1/2). (4.44)

Given l ∈ (0,1/8) the conditions on which the dimension of M depends in
Theorem GFST are that

λ1
N+1 >(MT

2 )2
{

1+ l

l
+4κ4 +11

}1/2

(4.45)

and

λ1
N+1 −λ1

N �2MT
2

(
1+ l

l

)((
λ1

N+1

)1/2 +
(
λ1

N

)1/2
)

. (4.46)
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We want to show explicity that (4.45) and (4.46) are satisfied. Recall that
we are taking N = m. We first note that since λ1

N+1 = λ1
m+1 = µλα

m+1 and
λ1

N =λ1
m =µλm we have that

λ1
N+1 −λ1

N = µλα
m+1 −µλm)

= µ1/2
(
λ

α/2
m+1 −λ

1/2
m

)(
(λ1

N+1)
1/2 + (λ1

N)1/2
)

. (4.47)

Using λm ∼ cm2/3 we have

λ
α/2
m+1 −λ

1/2
m ∼ (cλ1)

1/2
[
(cλ1)

(α−1)/2 (m+1)α/3 −m1/3
]

� (cλ1)
1/2
[
(cλ1)

(α−1)/2 mα/3 −m1/3
]

= (cλ1)
1/2 m1/3

[
(cλ1)

(α−1)/2 m(α−1)/3 −1
]

� (cλ1)
1/2 m1/3

[
(cλ1)

(α−1)/2 (m(α−1)/3 − (1/2)m(α−1)/3)
]

= (1/2) (cλ1)
1/3 m1/3

[
(cλ1)

(α−1)/2 m(α−1)/3
]

= (1/2) (cλ1)
α/2 mα/3, (4.48)

where it is safe to assume that m is large enough so that
(cλ1)

(α−1)/2 (1/2)m(α−1)/3 �1. With (4.48) we have (5).
To satisfy (4.45) using λ1

m+1 =µλα
m+1 ∼µcαλα

1 m(2α)/3 we want

m>µ−3/(2α)(cλ1)
−3/2(MT

2 )3/α

{
1+ l

l
+4κ4 +11

}3/(4α)

. (4.49)

To satisfy (4.46), from (4.47) and (4.48) we want

m>23/αµ−3/(2α)(cλ1)
−3/2(MT

2 )3/α [(1+ l) / l]3/α . (4.50)

Meanwhile, there is dependence on m in MT
2 coming from C2ρ ; recall that

C2ρ is defined from (4.41) by replacing M with 2ρ. Since C′
M = M2M5M

and C′′
M =M6M7M, if we set

C0 =max{2M2M5,2M6M7} (4.51)

then we have from (4.40) and (4.51) that

C2ρ = 2µ−1/2λ
(α−1)/2
m C0ρ +νµ−(1/2)

(
λ

(α−1)/2
m λ

−((α/2)−1)

1

)

= λ
(α−1)/2
m

[
2µ−1/2C0ρ +νµ−1/2λ

−((α/2)−1)

1

]

∼ (cλ1)
(α−1)/2m(α−1)/3

[
2µ−1/2C0ρ +νµ−1/2λ

−((α/2)−1)

1

]

≡ m(α−1)/3C
µ,ν,ρ

1 . (4.52)
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Now from (4.42b), (4.42c) and (4.52) we have that

(MT
2 )3/α � [(2C2ρ)/ρ +C2ρ]3/α �m(α−1)/α[(2C

µ,ν,ρ

1 )/ρ +C
µ,ν,ρ

1 ]3/α

≡ m(α−1)/α(C
µ,ν,ρ

2 )3/α, (4.53)

thus from (4.49) we have that (4.45) is satisfied if

m>µ−3/(2α) (cλ1)
−3/2 m(α−1)/α(C

µ,ν,ρ

2 )3/α

{
1+ l

l
+4κ4 +11

}3/(4α)

, (4.54)

and from (4.50) we have that (4.46) is satisfied if

m>23/αµ−3/(2α)(cλ1)
−3/2m(α−1)/α(C

µ,ν,ρ

2 )3/α[(1+ l)/ l]3/α, (4.55)

from which by solving for m we obtain the conditions

m>µ−3/2 (cλ1)
−(3α)/2 (C

µ,ν,ρ

2 )3[(1+ l)/ l +4κ4 +11]3/4, (4.56)

and

m>8µ−3/2 (cλ1)
−(3α)/2 (C

µ,ν,ρ

2 )3[(1+ l)/ l]3, (4.57)

for m to satisfy. Thus we have an inertial manifold if m is larger than
the maximum of the right-hand sides of (4.56) and (4.57). Reversing λm ∼

cm2/3 we have

λm >µ−1c1−αλ−α
1 (C

µ,ν,ρ

2 )2[(1+ l)/ l +4κ4 +11]1/2, (4.58)

and

λm >4µ−1c1−αλ−α
1 (C

µ,ν,ρ

2 )2[(1+ l)/ l]2, (4.59)

for λm to satisfy; we will refine the estimates (4.58), (4.59) below. This
established Theorem 6 in the special case α �5/2, µ�ν, and Aϕ =QmAα.

We now prove Theorem 6 for all values of α � 3/2, all Aϕ satisfy-
ing PmAϕ =0 and QmAϕ �QmAα, and all positive µ, ν. The spectral gap
between λ1

m+1 and λ1
m inherent in the structure of a similar A1 will still

work best with the choice γ = 1/2 which by (4.34) means that we need
β � 5/(4α) − 1/2 in the case 3/2 � α < 5/2; for α � 5/2 we can still take
β = 0. Given these choices of γ and β we will again develop conditions
that will show how big m must be to guarantee the existence of an iner-
tial manifold. Let c1 = min{µ,ν} and let c2 = max{ν − µ,µ − ν}; set A2 =
c1(PmA+QmAϕ), and set A3 =PmA for µ� ν and A3 =QmAϕ for µ� ν.
Then we now take

A1 =νA+µAϕ = c1(PmA+QmAϕ)+ c2A3 +νQmA

≡ A2 + c2A3 +νQmA, (4.60)
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which allows us to simply take

R (u)= (u ·∇) u. (4.61)

We set A4 = c1(PmA+QmAα)= c1N
α−1Aα where N =PmA−1 +Qm as above.

Working with (4.11), (4.34), and (4.39) as before, we can calculate that A4 sat-
isfies (4.4) with CM = (1/c1)

η λ
η(α−1)
m max{C′

M,C′′
M}; note again that we are

using γ =1/2 and η≡γ −β =1/2−β, with β =5/(4α)−1/2 for 3/2�α <5/2
and β =0 for α �5/2. Now by the functional calculus A−s

1 �A−s
2 �A−s

4 while

As
4 � As

2 � As
1 so that

∥∥∥Aβ−γ

1 (R (u)−R (v))

∥∥∥
2

�
∥∥∥Aβ−γ

4 (R (u)−R (v))

∥∥∥
2

�

CM

∥∥∥Aβ

4 (u−v)

∥∥∥
2
�CM

∥∥∥Aβ

1 (u−v)

∥∥∥
2
. This means that A1 also satisfies (4.4)

with CM , β, γ , and η as above. We now have (3) with

CM = c
−η

1 λη(α−1)
m C0M (4.62)

where C0 is as in (4.51).
For the case 7/4<α<5/2, set c0 =max{µ,ν}, then since A

β

1 � (c0A
α)β

we can take for some δ >0

ρ = c
−β

0 (1+ δ)(ρm,β1)
1/2 (4.63)

where ρm,β1 is defined in (2.24) with β1 =αβ replacing β. For 3/2�α�7/4
we use the “messier” estimates that can be bootstrapped from (2.22) men-
tioned in Section 2. For α�5/2 we again take ρ as in (4.41). We now have
that (1–4) are satisfied for the new choices of A1 and R(u) in (4.37), (4.38).
In particular, for ρ as in (4.41) or (4.63) we thus have that

C2ρ = 2(c1)
−ηλη(α−1)

m C0ρ

∼ (cm2/3)η(α−1)[2(c1)
−ηC0ρ]

= 2(cλ1)
η(α−1)m2η(α−1)/3[(c1)

−ηC0ρ], (4.64)

and, combining (4.42b), (4.42c), and (4.64) we thus have that

MT
2 � (2C2ρ)/ρ +C2ρ =m2η(α−1)/3[2(cλ1)

η(α−1)c1
−ηC0(2+ρ)]. (4.65)

Meanwhile, since c2A3 and νQmA are positive operators, since A4 �
A2 � A1, and since λ1

m+1 � µλα
m+1, we have that (4.47) becomes λ1

N+1 −
λ1

N = (
(λ1

m+1)
1/2 − (λ1

m)1/2
) (

(λ1
m+1)

1/2 + (λ1
m)1/2

)
� ((µλα

m+1)
1/2 − (νλm)1/2)

(
(λ1

m+1)
1/2 + (λ1

m)1/2
)
, while (4.48) becomes
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µ1/2λ
α/2
m+1 −ν1/2λ

1/2
m ∼ (cλ1)

1/2
[
(cλ1)

(α−1)/2 µ1/2 (m+1)α/3 −ν1/2m1/3
]

� (cλ1)
1/2
[
(cλ1)

(α−1)/2 µ1/2mα/3 −ν1/2m1/3
]

= (cλ1)
1/2 m1/3

[
(cλ1)

(α−1)/2 µ1/2m(α−1)/3 −ν1/2
]

� (cλ1)
1/2 m1/3

[
(cλ1)

(α−1)/2 µ1/2(m(α−1)/3

−(1/2)m(α−1)/3)
]

= (1/2)µ1/2 (cλ1)
1/2 m1/3

[
(cλ1)

(α−1)/2 m(α−1)/3
]

= (1/2)µ1/2 (cλ1)
α/2 mα/3, (4.66)

where we have assumed that (1/2)(cλ1)
(α−1)/2µ1/2m(α−1)/3 � ν1/2 or

m(α−1)/3 � 2(cλ1)
−(α−1)/2(ν/µ)1/2; with this assumption, which we will

need to remember later, we now have (5). Combining (4.42a–4.42c) with
(4.64), (465) and λ1

m+1 �µλα
m+1, and setting pα ≡[α−2η(α−1)]/3, we have

that (4.45) is satisfied if

mpα >2µ−1/2(cλ1)
η(α−1)−α/2(1/c1)

ηC0(2+ρ)]
{

1+ l

l
+4κ4 +11

}1/4

,

(4.67)

where we have taken the square-root of both sides of (4.45) after plug-
ging in. Combining (4.42a–4.42c) with (4.64), (465) and (4.66) we have
that (4.46) is satisfied if

m
pα

>8µ−1/2(cλ1)
η(α−1)−α/2(1/c1)

ηC0(2+ρ)][(1+ l)/ l]. (4.68)

Thus if mpα is larger than the maximum of the right-hand sides of (4.67)
and (4.68), and if m(α−1)/3 � 2(cλ1)

−(α−1)/2(ν/µ)1/2 which gave (4.66) and
thus (5), we have an inertial manifold M as before. This finishes the proof
of Theorem 6; though the proof is somewhat more involved than the proof
we used for α �5/2, the estimates (4.67) and (4.68) in fact refine those in
(4.58), (4.59) as we will see below.

We now explore what conditions on m are implied by (4.68), (4.69).
Recall that η≡γ −β =1−5/(4α) if 3/2�α<5/2. Thus we have, for exam-
ple, that pα = 4/9 if α = 3/2, and that pα = 5/12 if α = 2. For α � 5/2 we
take β =0 so that η=1/2, η(α−1)−α/2=−(1/2), and pα =1/3, in which
case the estimates (4.67), (4.68) simplify to

m>µ−3/2 (cλ1)
−3/2 [2(1/c1)

1/2C0(2+ρ)]3[(1+ l)/ l +4κ4 +11]3/4, (4.69)

and

m>µ−3/2 (cλ1)
−3/2 [8(1/c1)

1/2C0(2+ρ)]3[(1+ l)/ l]3 (4.70)
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for m to satisfy. Reversing λm ∼ cλ1m
2/3 in this case and simplifying we

have

λm >4(µc1)
−1[C0(2+ρ)]2[(1+ l)/ l +4κ4 +11]1/2, (4.71)

and

λm >64(µc1)
−1[C0(2+ρ)]2[(1+ l)/ l]2, (4.72)

for λm to satisfy, along with m(α−1)/3 � 2(cλ1)
−(α−1)/2(ν/µ)1/2 which

becomes λm � [2(ν/µ)]1/(α−1). For α � 5/2 the latter requires that λm �
[2(ν/µ)]2/3, which is less stringent an assumption than the requirements
of (4.71) and (4.72). Note that (4.71) and (4.72) are cleaner estimates in
terms of the key parameters µ, c1, and ρ than (4.58) and (4.59).

We can estimate how large λm has to be in (4.71), (4.72) by using
(4.41) and (4.63); in the case α � 5/2 where we take β = 0 we can from
(4.41) set ρ =Lf /(νλ1)= νλ

1/4
1 G. The right-hand sides of (4.71), (472) in

this case are on the order of generic constants times (µc1)
−1(2+νλ

1/4
1 G)2.

This is larger than our estimates on the attractor as discussed above when
expressed in terms of G, both in terms of a higher power on G and
because of the extra term (µc1)

−1. On the other hand, these estimates
are not wildly larger than our attractor estimates, so we can be somewhat
satisfied with them, especially given the fact that A⊂M. When α<5/2 we
can expect significantly larger estimates, given that now we need to take
ρ as in (4.63) or bootstrapped from that as discussed above. Meanwhile
the case α �5/2 leaves out the case α =2 often used in practice, but does
include the case α = 3 used in [10] as well as the higher values used in
[5, 6] as noted.

For Theorem 7, since now Aϕ satisfies the conditions of Theorem 6
for m0 playing the role of m and µm0+1 playing the role of µ, we sim-
ply make these replacements throughout the proof of Theorem 6. Since we
expect µm0+1 to be significantly smaller than µ, the estimates become sig-
nificantly larger, in particular we can expect that c1 =µ1.

For A
′
ϕ as in Theorem 8, we show that Aϕ satisfies the conditions of

Theorem 6 for m1 playing the role of m and µm1+1 playing the role of
µ. After making these replacements, and for simplicity setting m1 =m and
ηm1 =η, the only significant difference in the proof is that (4.66) needs to
be replaced by:
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µλ
α/2
m+1 −νλ

(ηα)/2
m ∼ (cλ1)

(ηα)/2
[
(cλ1)

[(1−η)α]/2 µ(m+1)α/3 −νm(ηα)/3
]

� (cλ1)
(ηα)/2

[
(cλ1)

[(1−η)α]/2 µmα/3 −νm(ηα)/3
]

= (cλ1)
(ηα)/2 m(ηα)/3

[
(cλ1)

[(1−η)α]/2 µm[(1−η)α]/3 −ν
]

� (cλ1)
(ηα)/2 m(ηα)/3

[
(cλ1)

[(1−η)α]/2 (m[(1−η)α]/3

− (1/2)m[(1−η)α]/3)
]

= (1/2) (cλ1)
(ηα)/2 m(ηα)/3

[
(cλ1)

[(1−η)α]/2 m[(1−η)α]/3
]

= (1/2) (cλ1)
α/2 mα/3, (4.73)

where we are assuming that m is large enough that (cλ1)
[(1−η)α]/2 (1/2)

µm[(1−η)α]/3 �ν; this should not significantly increase our estimates unless
η is very close to 1. This concludes the proof of Theorem 8.

5. CONCLUSION

We imagine a variety of generalizations of Theorems 6–8 may be pos-
sible given further exploration of the class of operators Aϕ . Such general-
izations could include in particular versions of the perturbation results in
[17, 18, 33] adapted to these settings.

The results in [15] are among a number of important results obtained
for the closure model variously known as the LANS-α model, the 3D
Camassa–Holm equations, or simply NS-α model. This model was derived
in its inviscid form in [19, 20] with the goal of providing a closure model
for incompressible flow in which all of the geometrical, and in particular
invariant, properties of the inviscid dynamics are retained. In the viscous
form, the equations take the standard NSE ((1.1) with Ssg =0) and replace
ut with (α2

0I +α2
1A)ut and u× (∇ ×u) with u× (∇ × (α2

0I +α2
1Au)).

Global regularity of these equations on a periodic box and subse-
quence convergence to Leray solutions of the NSE as α1 →0 (and α0 →1)
is established in [15], as well as estimates on the Hausdorff and fractal
dimension of the attractor. In particular it is shown in [15] that dimH A�
dimF A� c(α2

1λ1)
−3/4 [l0/lε ]3 ∼ cα

−3/2
1 |Ω|1/2 [l0/lε ]3 for a generic constant

c. The power on l0/lε matches the Landau–Lifschitz prediction and also
matches the estimates on invariant sets bounded in V =PH 1(Ω) for weak
solutions of the 3D NSE as shown in [11–13]. There is also no potential to
“absorb” the growth term (1/α1)

3/2, so the estimate simply grows without
bound as α1 →0. In contrast the estimates (1.8), (1.10) have significant lee-
way to allow for values of m large enough so that λm is past the inertial



516 Avrin

range, suggesting good to very good NSE approximation and very good
agreement with the Landau–Lifschitz theory as discussed following (1.10).
The estimates (1.8), (1.10) are also scale-invariant.

The NS-α model has interesting physical properties. For further
references on results for the NS-α model as well as mathematical and
physical properties in both the viscous and inviscid cases, see the refer-
ences and discussion in e.g. [1, 15, 28]. In [1] we obtained global regularity
and subsequence-convergence results for a spectrally-implemented version
of the NS-α that are the analogues of those we obtained therein for (1.4),
and in a future paper we plan to develop attractor estimates for this spec-
tral NS-α model along the lines of the estimates developed here.

The Kolmogorov theory predicts that the inertial range, i.e.
wavenumber modes corresponding to wavenumbers below kd=1/lε , behaves
almost inviscidly, while the wavenumber modes above the inertial range are
quickly dissipated by viscosity. The idea of (1.4), like the SEV and SVV
models which motivate it, is to enforce suppression of high wavenumbers
while preserving the inertial range. If the inertial range sees only standard
NSE viscosity, this is virtually assured, since the Kolmogorov theory pre-
dicts that the wavenumber modes in the dissipative range quickly become
of no dynamical consequence.

It makes sense particularly for high Reynolds numbers to keep the
inertial range free of extra regularization because the actual convective
process needs some time to cascade energy to the dissipative scales; before
then some of the energy transferred from larger to smaller scales in the
inertial range will transfer back, or “backscatter” to the larger scales.
Indeed, “the convective nature of cascades is reflected in the presence of
the energy backscatter” [6]. This reinforces the motivation to keep all of
the dynamical structures of the convective cascade in the inertial range
intact.

These observations together with the Kolmogorov theory, in which
“viscosity provides an ultraviolet cutoff at a dissipation wavenumber
kd”[6], suggest the suitability of a multiscale model. This is reflected
throughout the development here, but particularly in Theorems 6–8, which
directly use the multiscale aspects of the model to produce a wider spec-
tral gap than otherwise.

Estimates on the number of degrees of freedom for the NSE and its
closure models are a measure of the complexity of the system. In addition
to upper bounds, lower bounds on the dimension of the attractor for the
2D NSE have been obtained as well; see the discussion and references in
[16] and [33]. Another interesting way to obtain a lower-bound estimate
on the complexity is to provide upper bounds on the size of the nodal set
for the vorticity, as was done in [25, 26] for periodic solutions of the 2D
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NSE. It would be interesting to obtain estimates for (1.4) in this context
in 3D and to see how the estimates depend on m.
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